Novel Chromosome Organization Pattern in Actinomycetales—Overlapping Replication Cycles Combined with Diploidy
نویسندگان
چکیده
Bacteria regulate chromosome replication and segregation tightly with cell division to ensure faithful segregation of DNA to daughter generations. The underlying mechanisms have been addressed in several model species. It became apparent that bacteria have evolved quite different strategies to regulate DNA segregation and chromosomal organization. We have investigated here how the actinobacterium Corynebacterium glutamicum organizes chromosome segregation and DNA replication. Unexpectedly, we found that C. glutamicum cells are at least diploid under all of the conditions tested and that these organisms have overlapping C periods during replication, with both origins initiating replication simultaneously. On the basis of experimental data, we propose growth rate-dependent cell cycle models for C. glutamicumIMPORTANCE Bacterial cell cycles are known for few model organisms and can vary significantly between species. Here, we studied the cell cycle of Corynebacterium glutamicum, an emerging cell biological model organism for mycolic acid-containing bacteria, including mycobacteria. Our data suggest that C. glutamicum carries two pole-attached chromosomes that replicate with overlapping C periods, thus initiating a new round of DNA replication before the previous one is terminated. The newly replicated origins segregate to midcell positions, where cell division occurs between the two new origins. Even after long starvation or under extremely slow-growth conditions, C. glutamicum cells are at least diploid, likely as an adaptation to environmental stress that may cause DNA damage. The cell cycle of C. glutamicum combines features of slow-growing organisms, such as polar origin localization, and fast-growing organisms, such as overlapping C periods.
منابع مشابه
The endocycle controls nurse cell polytene chromosome structure during Drosophila oogenesis.
Polytene chromosomes exhibit intricate higher order chromatin structure that is easily visualized due to their precisely aligned component strands. However, it remains unclear if the same factors determine chromatin organization in polyploid and diploid cells. We have analyzed one such factor, the cell cycle, by studying changes in Drosophila nurse cell chromosomes throughout the 10 to 12 endoc...
متن کاملVaricella Zoster Virus (VZV) Origin-Dependent Plasmid Replication in the Presence of the Four Overlapping Cosmids Comprising the Complete Genome of VZV
The Varicella-Zoster Virus (VZV) genome contains both cis-acting and trans-acting elements, which are important in viral DNA replication. The cis-acting elements consist of two copies of oriS, and the trans-acting elements are those genes whose products are required for virus DNA replication. It has been shown that each of the seven genes required for ori-dependent DNA synthesis of Herpes Simpl...
متن کاملReplicon Clusters Are Stable Units of Chromosome Structure: Evidence That Nuclear Organization Contributes to the Efficient Activation and Propagation of S Phase in Human Cells
In proliferating cells, DNA synthesis must be performed with extreme precision. We show that groups of replicons, labeled together as replicon clusters, form stable units of chromosome structure. HeLa cells were labeled with 5-bromodeoxyuridine (BrdU) at different times of S phase. At the onset of S phase, clusters of replicons were activated in each of approximately 750 replication sites. The ...
متن کاملPerformance Analysis of a Novel Three-phase Axial Flux Switching Permanent Magnet Generator with Overlapping Concentrated Winding
This paper proposes a novel axial flux switching permanent magnet generator for small wind turbine applications. Surface mounted axial flux switching permanent magnet (SMAFSPM) machine is a new type of these machines that is introduced in this paper. One of the most important challenges in optimal designing of this kind of machines, is ease of construction and maintenance. One of the main featu...
متن کاملI-38: Chromosome Instability in The Cleavage Stage Embryo
Recently, we demonstrated chromosome instability (CIN) in human cleavage stage embryogenesis following in vitro fertilization (IVF). CIN not necessarily undermines normal human development (i.e. when remaining normal diploid blastomeres develop the embryo proper), however it can spark a spectrum of conditions, including loss of conception, genetic disease and genetic variation development. To s...
متن کامل